SQLite MCP Server
SQLite MCP servers enable AI models to interact with SQLite databases, providing capabilities for structured data operations, SQL queries, and local data management.
Overview
The MCP SQLite Server provides a lightweight and efficient way for AI models to interact with SQLite databases. Based on the official Python reference, this Node.js implementation offers an npx-based solution for environments where Python's UVX runner might not be available. It enables AI to perform structured data operations, execute SQL queries, and manage local data, making it ideal for embedded applications and local data storage needs.
Created by:
Developed by johnnyoshika
Key Features
Local Data Management
Efficiently manage and query data stored in local SQLite files.
SQL Query Execution
Execute standard SQL queries for data retrieval and manipulation.
Lightweight & Embedded
Ideal for embedded applications and scenarios requiring a serverless database.
Schema Inspection
Inspect database schemas, tables, and column details.
Available Tools
Quick Reference
| Tool | Purpose | Category |
|---|---|---|
query | Execute SELECT queries | Read |
execute | Execute INSERT/UPDATE/DELETE | Write |
list_tables | List tables in the database | Schema |
describe_table | Get table structure details | Schema |
Detailed Usage
query▶
Execute SELECT queries with optional prepared statement parameters.
use_mcp_tool({
server_name: "sqlite",
tool_name: "query",
arguments: {
sql: "SELECT * FROM users WHERE id = ?",
params: [1]
}
});
Returns matching rows from the database.
execute▶
Execute INSERT, UPDATE, or DELETE queries with optional prepared statement parameters.
use_mcp_tool({
server_name: "sqlite",
tool_name: "execute",
arguments: {
sql: "INSERT INTO users (name, email) VALUES (?, ?)",
params: ["Jane Doe", "[email protected]"]
}
});
Returns information about the executed statement (e.g., last insert ID, rows affected).
list_tables▶
List all tables in the connected SQLite database.
use_mcp_tool({
server_name: "sqlite",
tool_name: "list_tables",
arguments: {}
});
Returns a list of table names.
describe_table▶
Get the structure (columns, types) of a specific table.
use_mcp_tool({
server_name: "sqlite",
tool_name: "describe_table",
arguments: {
table: "users"
}
});
Provides column names, data types, and other table details.
Installation
{
"mcpServers": {
"sqlite": {
"command": "npx",
"args": [
"-y",
"mcp-server-sqlite-npx",
"/absolute/path/to/database.db"
],
"env": {}
}
}
}
Database Path:
Replace /absolute/path/to/database.db with the actual path to your SQLite database file.
Common Use Cases
1. Local Data Storage
Store and retrieve application configuration or user preferences locally:
use_mcp_tool({
server_name: "sqlite",
tool_name: "execute",
arguments: {
sql: "CREATE TABLE IF NOT EXISTS settings (key TEXT PRIMARY KEY, value TEXT)"
}
});
use_mcp_tool({
server_name: "sqlite",
tool_name: "execute",
arguments: {
sql: "INSERT OR REPLACE INTO settings (key, value) VALUES (?, ?)",
params: ["theme", "dark"]
}
});
use_mcp_tool({
server_name: "sqlite",
tool_name: "query",
arguments: {
sql: "SELECT value FROM settings WHERE key = ?",
params: ["theme"]
}
});
2. Embedded Analytics
Perform simple analytics on local datasets without external dependencies:
use_mcp_tool({
server_name: "sqlite",
tool_name: "query",
arguments: {
sql: "SELECT category, COUNT(*) as count FROM products GROUP BY category ORDER BY count DESC"
}
});
3. Caching for Offline Access
Cache data from remote APIs for offline access or reduced network calls:
use_mcp_tool({
server_name: "sqlite",
tool_name: "execute",
arguments: {
sql: "CREATE TABLE IF NOT EXISTS api_cache (url TEXT PRIMARY KEY, data TEXT, timestamp INTEGER)"
}
});
use_mcp_tool({
server_name: "sqlite",
tool_name: "execute",
arguments: {
sql: "INSERT OR REPLACE INTO api_cache (url, data, timestamp) VALUES (?, ?, ?)",
params: ["/api/data", JSON.stringify(apiData), Date.now()]
}
});
use_mcp_tool({
server_name: "sqlite",
tool_name: "query",
arguments: {
sql: "SELECT data FROM api_cache WHERE url = ? AND timestamp > ?",
params: ["/api/data", Date.now() - 3600000] // Data less than 1 hour old
}
});
Connection String Format
The SQLite MCP server connects directly to a specified .db file. The path to this file is provided as an argument during server initialization.
- Database Path: The absolute path to the SQLite database file (e.g.,
/absolute/path/to/database.db).
Sources
Related Articles
Zapier MCP Server
Zapier MCP servers enable AI models to connect with 8,000+ apps and 30,000+ actions, providing powerful workflow automation and integration capabilities without complex API integrations.
Filesystem MCP Server
Filesystem MCP servers enable AI models to interact with local file systems, providing capabilities for file operations, directory management, and secure file access within specified boundaries.
Seq MCP Server: Real-time Log Analytics for AI Models
Seq MCP servers empower AI models to interact with Seq, a structured log server, for log ingestion, querying, filtering, and real-time analysis.