Confluence MCP Servers
Confluence MCP servers provide interfaces for LLMs to interact with Atlassian Confluence workspaces. These servers enable AI models to manage documentation, collaborate on content, and automate knowledge management tasks.
Core Components
Content Management Server
class ConfluenceServer extends MCPServer {
capabilities = {
tools: {
'createPage': async (params) => {
// Create new confluence pages
},
'updateContent': async (params) => {
// Update existing content
},
'manageMacros': async (params) => {
// Handle confluence macros
}
},
resources: {
'spaceContent': async () => {
// Get space content structure
}
}
}
}
Implementation Examples
Space Management
class SpaceManager extends MCPServer {
async initialize() {
return {
tools: {
'organizePage': this.handlePageHierarchy,
'managePermissions': this.updateSpacePermissions,
'handleAttachments': this.processAttachments
}
};
}
private async handlePageHierarchy({ pageId, parentId }) {
// Implement page organization logic
}
}
Configuration Options
confluence:
baseUrl: "https://your-domain.atlassian.net"
spaceKey: "DOCS"
apiVersion: "v2"
content:
defaultTemplate: "documentation"
autoSave: true
versioningEnabled: true
Security Guidelines
-
Access Management
- API token security
- Space restrictions
- User permissions
-
Content Protection
- Version control
- Page restrictions
- Backup policies
Common Use Cases
-
Documentation
- Technical docs
- Process guides
- Knowledge bases
-
Team Collaboration
- Meeting notes
- Project plans
- Team spaces
-
Content Automation
- Template generation
- Content migration
- Bulk updates
Best Practices
-
Content Organization
- Structured hierarchy
- Consistent templates
- Clear labeling
-
Performance
- Batch operations
- Cache management
- Resource optimization
Testing Strategies
-
Content Management
- Page creation
- Update validation
- Permission checks
-
Integration Testing
- API compatibility
- Macro handling
- Attachment processing
Related Articles
Supabase in MCP
Supabase is an open-source backend-as-a-service platform that provides a powerful and scalable database solution, making it a valuable component in the Model Context Protocol (MCP). Its real-time capabilities and ease of integration enable seamless data management for MCP-driven workflows.
DALL-E Image Generation
A comprehensive guide to using DALL-E for AI image generation, including how to create, edit and manipulate images using OpenAI's DALL-E API, best practices for prompts, and practical examples for generating high-quality AI artwork.
Azure Table Storage in MCP
Azure Table Storage is a NoSQL data store that provides a scalable and cost-effective solution for storing structured data. It plays a valuable role in the Model Context Protocol (MCP) by offering a flexible and efficient way to manage the data required for model-driven workflows.