Retrieval Augmented Thinking MCP Servers
Learn how to implement Retrieval Augmented Generation (RAG) in MCP servers to enhance AI responses with relevant information from external knowledge bases.
Retrieval Augmented Thinking MCP Servers
Overview
Retrieval Augmented Thinking MCP servers provide interfaces for LLMs to enhance their responses with relevant information retrieved from external knowledge bases. These servers enable AI models to combine their general knowledge with specific, accurate information from trusted sources.
Core Components
Knowledge Retrieval Server
class RAGServer extends MCPServer {
capabilities = {
tools: {
'queryKnowledge': async (params) => {
// Query vector database
},
'updateContext': async (params) => {
// Update context with retrieved info
},
'rankRelevance': async (params) => {
// Rank retrieved passages
}
},
resources: {
'knowledgeBase': async () => {
// Access knowledge sources
}
}
}
}
Implementation Examples
Context Management
class ContextManager extends MCPServer {
async initialize() {
return {
tools: {
'embedDocument': this.handleEmbedding,
'searchSimilar': this.findSimilarContent,
'mergeContext': this.combineInformation
}
};
}
private async handleEmbedding({ content, metadata }) {
// Implement document embedding
}
}
Configuration Options
retrieval:
vectorStore: "pinecone" # or milvus, qdrant
embeddingModel: "openai"
contextWindow: 4096
augmentation:
maxResults: 5
minRelevance: 0.75
sourcePriority: ["docs", "kb", "web"]
Security Guidelines
-
Data Access
- Source verification
- Access control
- Usage tracking
-
Content Filtering
- Relevance checking
- Source validation
- Information freshness
Common Use Cases
-
Knowledge Enhancement
- Fact verification
- Source citation
- Context expansion
-
Information Retrieval
- Document search
- Semantic matching
- Multi-source fusion
-
Content Generation
- Research assistance
- Documentation generation
- Answer synthesis
Best Practices
-
Knowledge Management
- Index maintenance
- Content updates
- Version control
-
Query Optimization
- Search strategies
- Result ranking
- Context windowing
Testing Strategies
-
Retrieval Testing
- Search accuracy
- Response relevance
- Context quality
-
Integration Testing
- Vector store connectivity
- Embedding generation
- Result merging
Related Articles
ClickHouse and Tinybird in MCP
ClickHouse and Tinybird are powerful tools for managing and querying large-scale data, and they play a significant role in the Model Context Protocol (MCP). These systems enable efficient data processing and real-time analytics, which are critical for supporting model-driven workflows in MCP.
Integration and Automation MCP Servers
The Integration & Automation category provides integration with automation tools and workflow systems, enabling seamless connectivity and process automation across different platforms and services.
Youtube Research
This is a comprehensive guide to integrating YouTube with MCP servers, enabling AI models to interact with video content, analytics, and user data through standardized interfaces.