Neo4j Storage for MCP Servers
Learn how to implement Neo4j graph database storage for Model Context Protocol servers
Overview
Neo4j provides a powerful graph database solution for storing and querying model contexts with complex relationships. This implementation allows MCP servers to leverage graph-based storage for context management.
Prerequisites
- Neo4j 5.0 or higher
- Node.js 18 or higher
- MCP server base implementation
- Neo4j Desktop (optional, for visualization)
Installation
npm install neo4j-driver
Implementation
// filepath: /path/to/Neo4jStorage.ts
import neo4j, { Driver, Session } from 'neo4j-driver';
class Neo4jStorage implements MCPStorageProvider {
private driver: Driver;
constructor(uri: string, username: string, password: string) {
this.driver = neo4j.driver(uri, neo4j.auth.basic(username, password));
}
async initialize(): Promise<void> {
const session = this.driver.session();
try {
// Create constraints
await session.run(`
CREATE CONSTRAINT context_id IF NOT EXISTS
FOR (c:Context) REQUIRE c.id IS UNIQUE
`);
} finally {
await session.close();
}
}
async storeContext(contextId: string, data: Buffer): Promise<void> {
const session = this.driver.session();
try {
await session.run(`
MERGE (c:Context {id: $contextId})
SET c.data = $data,
c.updatedAt = datetime(),
c.size = $size
`, {
contextId,
data: data.toString('base64'),
size: data.length
});
} finally {
await session.close();
}
}
async retrieveContext(contextId: string): Promise<Buffer> {
const session = this.driver.session();
try {
const result = await session.run(`
MATCH (c:Context {id: $contextId})
RETURN c.data
`, { contextId });
if (result.records.length === 0) {
throw new Error('Context not found');
}
return Buffer.from(result.records[0].get('c.data'), 'base64');
} finally {
await session.close();
}
}
}
Related Articles
Fantasy Premier League
Fantasy Premier League
Twitter Integration
This guide covers the integration of Twitter with MCP servers, enabling AI models to interact with real-time social media data, user engagement, and analytics through standardized interfaces.
Analytics and Data MCP Servers
Explore MCP servers for analytics and data processing, providing standardized interfaces for AI models to interact with analytics platforms and data visualization tools.